Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils.

Identifieur interne : 002461 ( Main/Exploration ); précédent : 002460; suivant : 002462

The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils.

Auteurs : Richard S. Winder [Canada] ; Josyanne Lamarche ; C Peter Constabel ; Richard C. Hamelin

Source :

RBID : pubmed:24133486

Abstract

The impacts of leaf litter from genetically modified hybrid poplar accumulating high levels of condensed tannins (proanthocyanidins) were examined in soil microcosms consisting of moss growing on sieved soil. Moss preferentially proliferated in microcosms with lower tannin content; DGGE (denaturing gradient gel electrophoresis) detected increased fungal diversity in microcosms with low-tannin litter. The proportion of cloned rDNA sequences from Actinobacteria decreased with litter addition while Bacteroidetes, Chloroflexi, Cyanobacteria, and α-Proteobacteria significantly increased. β-Proteobacteria were proportionally more numerous at high-tannin levels. Tannins had no significant impact on overall diversity of bacterial communities analyzed with various estimators. There was an increased proportion of N-fixing bacteria corresponding to the addition of litter with low-tannin levels. The addition of litter increased the proportion of Ascomycota/Basidiomycota. Dothideomycetes, Pucciniomycetes, and Tremellomycetes also increased and Agaricomycetes decreased. Agaricomycetes and Sordariomycetes were significantly more abundant in controls, whereas Pucciniomycetes increased in soil with litter from transformed trees (P = 0.051). Richness estimators and diversity indices revealed no significant difference in the composition of fungal communities; PCoA (principal coordinate analyses) partitioned the fungal communities into three groups: (i) those with higher amounts of added tannin from both transformed and untransformed treatments, (ii) those corresponding to soils without litter, and (iii) those corresponding to microcosms with litter added from trees transformed only with a β-glucuronidase control vector. While the litter from transformed poplars had significant effects on soil microbe communities, the observed impacts reflected known impacts on soil processes associated with tannins, and were similar to changes that would be expected from natural variation in tannin levels.

DOI: 10.3389/fmicb.2013.00290
PubMed: 24133486
PubMed Central: PMC3783982


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils.</title>
<author>
<name sortKey="Winder, Richard S" sort="Winder, Richard S" uniqKey="Winder R" first="Richard S" last="Winder">Richard S. Winder</name>
<affiliation wicri:level="1">
<nlm:affiliation>Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada Victoria, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada Victoria, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lamarche, Josyanne" sort="Lamarche, Josyanne" uniqKey="Lamarche J" first="Josyanne" last="Lamarche">Josyanne Lamarche</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
<author>
<name sortKey="Hamelin, Richard C" sort="Hamelin, Richard C" uniqKey="Hamelin R" first="Richard C" last="Hamelin">Richard C. Hamelin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24133486</idno>
<idno type="pmid">24133486</idno>
<idno type="doi">10.3389/fmicb.2013.00290</idno>
<idno type="pmc">PMC3783982</idno>
<idno type="wicri:Area/Main/Corpus">002438</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002438</idno>
<idno type="wicri:Area/Main/Curation">002438</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002438</idno>
<idno type="wicri:Area/Main/Exploration">002438</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils.</title>
<author>
<name sortKey="Winder, Richard S" sort="Winder, Richard S" uniqKey="Winder R" first="Richard S" last="Winder">Richard S. Winder</name>
<affiliation wicri:level="1">
<nlm:affiliation>Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada Victoria, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada Victoria, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lamarche, Josyanne" sort="Lamarche, Josyanne" uniqKey="Lamarche J" first="Josyanne" last="Lamarche">Josyanne Lamarche</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
<author>
<name sortKey="Hamelin, Richard C" sort="Hamelin, Richard C" uniqKey="Hamelin R" first="Richard C" last="Hamelin">Richard C. Hamelin</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The impacts of leaf litter from genetically modified hybrid poplar accumulating high levels of condensed tannins (proanthocyanidins) were examined in soil microcosms consisting of moss growing on sieved soil. Moss preferentially proliferated in microcosms with lower tannin content; DGGE (denaturing gradient gel electrophoresis) detected increased fungal diversity in microcosms with low-tannin litter. The proportion of cloned rDNA sequences from Actinobacteria decreased with litter addition while Bacteroidetes, Chloroflexi, Cyanobacteria, and α-Proteobacteria significantly increased. β-Proteobacteria were proportionally more numerous at high-tannin levels. Tannins had no significant impact on overall diversity of bacterial communities analyzed with various estimators. There was an increased proportion of N-fixing bacteria corresponding to the addition of litter with low-tannin levels. The addition of litter increased the proportion of Ascomycota/Basidiomycota. Dothideomycetes, Pucciniomycetes, and Tremellomycetes also increased and Agaricomycetes decreased. Agaricomycetes and Sordariomycetes were significantly more abundant in controls, whereas Pucciniomycetes increased in soil with litter from transformed trees (P = 0.051). Richness estimators and diversity indices revealed no significant difference in the composition of fungal communities; PCoA (principal coordinate analyses) partitioned the fungal communities into three groups: (i) those with higher amounts of added tannin from both transformed and untransformed treatments, (ii) those corresponding to soils without litter, and (iii) those corresponding to microcosms with litter added from trees transformed only with a β-glucuronidase control vector. While the litter from transformed poplars had significant effects on soil microbe communities, the observed impacts reflected known impacts on soil processes associated with tannins, and were similar to changes that would be expected from natural variation in tannin levels. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">24133486</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils.</ArticleTitle>
<Pagination>
<MedlinePgn>290</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2013.00290</ELocationID>
<Abstract>
<AbstractText>The impacts of leaf litter from genetically modified hybrid poplar accumulating high levels of condensed tannins (proanthocyanidins) were examined in soil microcosms consisting of moss growing on sieved soil. Moss preferentially proliferated in microcosms with lower tannin content; DGGE (denaturing gradient gel electrophoresis) detected increased fungal diversity in microcosms with low-tannin litter. The proportion of cloned rDNA sequences from Actinobacteria decreased with litter addition while Bacteroidetes, Chloroflexi, Cyanobacteria, and α-Proteobacteria significantly increased. β-Proteobacteria were proportionally more numerous at high-tannin levels. Tannins had no significant impact on overall diversity of bacterial communities analyzed with various estimators. There was an increased proportion of N-fixing bacteria corresponding to the addition of litter with low-tannin levels. The addition of litter increased the proportion of Ascomycota/Basidiomycota. Dothideomycetes, Pucciniomycetes, and Tremellomycetes also increased and Agaricomycetes decreased. Agaricomycetes and Sordariomycetes were significantly more abundant in controls, whereas Pucciniomycetes increased in soil with litter from transformed trees (P = 0.051). Richness estimators and diversity indices revealed no significant difference in the composition of fungal communities; PCoA (principal coordinate analyses) partitioned the fungal communities into three groups: (i) those with higher amounts of added tannin from both transformed and untransformed treatments, (ii) those corresponding to soils without litter, and (iii) those corresponding to microcosms with litter added from trees transformed only with a β-glucuronidase control vector. While the litter from transformed poplars had significant effects on soil microbe communities, the observed impacts reflected known impacts on soil processes associated with tannins, and were similar to changes that would be expected from natural variation in tannin levels. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Winder</LastName>
<ForeName>Richard S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada Victoria, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lamarche</LastName>
<ForeName>Josyanne</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Constabel</LastName>
<ForeName>C Peter</ForeName>
<Initials>CP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hamelin</LastName>
<ForeName>Richard C</ForeName>
<Initials>RC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus tremuloides</Keyword>
<Keyword MajorTopicYN="N">forestry</Keyword>
<Keyword MajorTopicYN="N">nitrogen cycle</Keyword>
<Keyword MajorTopicYN="N">risk assessment</Keyword>
<Keyword MajorTopicYN="N">transgenic</Keyword>
<Keyword MajorTopicYN="N">tree</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24133486</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2013.00290</ArticleId>
<ArticleId IdType="pmc">PMC3783982</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol. 2008 Nov;10(11):2966-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Apr;75(7):2046-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19201974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2005 Jan;109(Pt 1):103-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15736868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 May;76(2):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1999 Aug;86(8):1154-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Dec;196(4):1122-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23025512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2009 Jan;57(1):82-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18536862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1998 Oct 8;339(15):1085-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9767006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Sep;74(17):5340-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Apr;76(8):2607-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20173071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2012 Jun 15;3:210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22715335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 1991 Dec;21(1):163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24194208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):510-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2008 May;58(Pt 5):1114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18450699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):924-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Feb;214(4):653-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11925050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Mar;89(3):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18459340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Biosafety Res. 2010 Jan-Mar;9(1):25-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21122484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Dec;71(12):8228-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Sep 22;20(14):2317-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Jul;26(7):977-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17310333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2001 Dec;19(12):500-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11711193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):535-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Mar;37(3):311-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21340461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Oct;66(10):4356-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11010882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Apr;6(4):802-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Jun;88(6):1354-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Jul;73(13):4128-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Oct;73(20):6577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17660307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2006 Nov-Dec;98(6):896-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 17;442(7104):806-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2004 Feb;56(2):181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Jun;136(1):124-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684853</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
<name sortKey="Hamelin, Richard C" sort="Hamelin, Richard C" uniqKey="Hamelin R" first="Richard C" last="Hamelin">Richard C. Hamelin</name>
<name sortKey="Lamarche, Josyanne" sort="Lamarche, Josyanne" uniqKey="Lamarche J" first="Josyanne" last="Lamarche">Josyanne Lamarche</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Winder, Richard S" sort="Winder, Richard S" uniqKey="Winder R" first="Richard S" last="Winder">Richard S. Winder</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002461 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002461 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24133486
   |texte=   The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24133486" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020